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Abstract

In this paper, we study a number of multilevel schemes for the numerical solution of the shallow water equations;

new schemes and new perspectives of known schemes are examined. We consider the case of periodic boundary con-

ditions. Spatial discretization is obtained using a Fourier spectral Galerkin method. For the time integration, two strat-

egies are studied. The first one is based on scale separation, and we choose the time scheme (explicit or semi-implicit) as

a function of the spatial scales (multilevel schemes). The second approach is based on a splitting of the operators, and

we choose the time integration method as a function of the operator considered (multistep or fractional schemes). The

numerical results obtained are compared with the explicit reference scheme (Leap–Frog scheme), and with the semi-

implicit scheme (Leap–Frog scheme with Crank–Nicholson scheme for the gravity terms), both computed with a similar

mesh. The drawback of the explicit reference scheme being the numerical stability constraint on the time step, and the

drawback of the semi-implicit scheme being the dispersive error, the aim with the new schemes is to obtain schemes with

less dispersive error than the semi-implicit scheme, and with better stability properties than the explicit reference

scheme. The numerical results obtained show that the schemes proposed allow one to reduce the dispersive error

and to increase the numerical stability at reduced cost.
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1. Introduction: motivation of the problem

We consider the two-dimensional nonlinear shallow water problem, with periodic boundary conditions

(doubly periodic f-plane). This problem is considered as a planetary model for the simulation of atmo-

spheric or oceanic flows. The equations are written as follows:
ou

ot
þ ðX� uÞ þ f u? þ r ghþ 1

2
juj2

� �
¼ 0;

oh
ot

þ div ððH þ hÞuÞ ¼ 0;

ð1:1Þ
where u = (u,v)> is the velocity field, u^ = (�v,u)> the orthogonal velocity field, X = $ · u the vorticity vec-

tor, h the height of the free surface around H, and |� | the Euclidean norm.

Here, we have considered the formulation of the shallow water problem with the following scalar depen-

dent variables instead of the velocity vector u: the vorticity x ¼ ov
ox � ou

oy and the plane divergence d ¼ ou
ox þ ov

oy.

So, the problem considered is as follows:
ox
ot

þ oðxuÞ
ox

þ oðxvÞ
oy

þ f d ¼ 0;

od
ot

þ oðxuÞ
oy

� oðxvÞ
ox

� fxþ D ghþ 1

2
juj2

� �
¼ 0;

oh
ot

þ Hdþ div ðhuÞ ¼ 0:

ð1:2Þ
It is necessary to supplement these equations with initial conditions for x, d, h, and boundary conditions

(periodicity in the two directions). The computational domain X considered is X = (0,Lx) · (0,Ly), with
Lx = Ly = 6.31 · 106 m (earth radius), the period in the x and y directions.

The problem (1.2) induces substantial numerical difficulties if we want to compute directly the numer-

ical approximation of (1.2). Indeed, most atmospheric flows are turbulent flows, i.e., they contain a wide

range of scales with very different spatial size and characteristic times. To overcome these numerical dif-

ficulties, large eddy simulation (LES) models for turbulence modeling are usually proposed, in order to

compute only the large scales of the flow (which contain most of the kinetic energy and the enstrophy

in two-dimensional turbulent flows), and modeling the dissipative action of the small scales (which are

not computed) on the large ones (see, for example [36,39] for more details). In meteorology, a model often
used consists in adding a hyperdissipative operator in Eqs. (1.2) (see [3,5,6,21,35,44]). Such an operator is

of the form:
mTD
2p ð1:3Þ
with p an integer parameter and mT the turbulent viscosity (or eddy viscosity):
mT ¼ f

k04pmaxDt
: ð1:4Þ
Here, Dt is the time step retained for the numerical computation, k0max is the modulus of the highest wave-

number associated with the smallest computed scales: k0max ¼
ffiffiffi
2

p
2p
Lx
ðN
2
Þ ¼

ffiffiffi
2

p
2p
Ly
ðN
2
Þ, f is a nondimensional po-

sitive constant and p is an integer as in (1.3). In practice, for the numerical simulations described in this
paper, we have chosen p = 2 and f = 104.

As we will see in the next section, the role of the additive term (1.3) in Eqs. (1.2) is to prevent spectral

reflections in the high wavenumbers of the spectra, in order to obtain an energy spectrum (velocity spec-

trum) with a slope of k 0�3 in the inertial range, in agreement with the two-dimensional homogeneous
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turbulence theory (see [27]). The slope of the spectrum associated with the height is k 0�5, since h appears

through a gradient in the velocity equation (1.1) (see [14]). Finally, the problem considered here can be writ-

ten as follows:
ox
ot

þ mTD
2pxþ oðxuÞ

ox
þ oðxvÞ

oy
þ f d ¼ 0;

od
ot

þ mTD
2pdþ oðxuÞ

oy
� oðxvÞ

ox
� fxþ D ghþ 1

2
juj2

� �
¼ 0;

oh
ot

þ mTD
2phþ Hdþ div ðhuÞ ¼ 0:

ð1:5Þ
For the spatial discretization, we have used a spectral Galerkin method (see [8,22]), with the trigonometric

polynomials as Galerkin basis since the boundary conditions are periodic (Fourier spectral Galerkin
method). Since x, d and h are periodic in space, we can consider the infinite Fourier expansion for these

dependent variables. If the dependent variables are regular, the Fourier coefficients x̂k; d̂k and ĥk decrease
rapidly when |k| increases (see [8,22] for example). So, we can look for an approximation of x, d and h of

the following form (truncated Fourier expansions):
xN ðx; tÞ ¼
X
k2IN

x̂kðtÞ expðik0 � xÞ;

dN ðx; tÞ ¼
X
k2IN

d̂kðtÞ expðik0 � xÞ;

hN ðx; tÞ ¼
X
k2IN

ĥkðtÞ expðik0 � xÞ;

ð1:6Þ
where k = (k1,k2), k
0 ¼ ðk01; k02Þ ¼ ð2pLxk1;

2p
Ly
k2Þ; x ¼ ðx; yÞ; k0 � x ¼ k01xþ k02y is the Euclidean scalar product

and with IN ¼ ½1� N=2;N=2�2. The total number of modes retained is N2. We have retained the same num-

ber of modes N in the two directions x and y, since the computational domain X is symmetric (Lx = Ly),

and the turbulence is homogeneous and isotropic (see [4]). Moreover, we note that for xN, dN and hN de-

fined in (1.6), the periodic boundary conditions are automatically satisfied (Galerkin approximation).

The Fourier coefficients are computed using a method of weighted residuals (MWR). We impose that the

residuals, obtained by substituting xN, dN and hN, to x, d and h, in (1.5), have an orthogonal projection on

the space V N ¼ Spanfexpðik0 � xÞ; k 2 INg equal to zero, for the scalar product ð�;�ÞL2ðXÞ defined in L2(X).
This is equivalent to minimizing the residuals in energy norm (least square method), i.e., for the norm
k � kL2ðXÞ associated with the previous scalar product. So, using the orthogonality properties of the Fourier

polynomials for the L2(X) scalar product, we obtain the following system of ordinary differential equations

(ODEs), for the Fourier coefficients x̂k; d̂k and ĥk; fk 2 IN :
d

dt
x̂k þ mTjk0j4px̂k þ T̂ x;N ðkÞ þ f d̂k ¼ 0;

d

dt
d̂k þ mTjk0j4pd̂k þ T̂ d;N ðkÞ � f x̂k � gjk0j2ĥk ¼ 0;

d

dt
ĥk þ mTjk0j4pĥk þ H d̂k þ T̂ h;NðkÞ ¼ 0:

ð1:7Þ
With spectral Galerkin methods, one of the difficulties is the computation of the nonlinear terms. We have

denoted by Tx,N, Td,N and Th,N the approximations of these nonlinear convective terms:
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T x;N ¼ o

ox
ðxNuN Þ þ

o

oy
ðxNvNÞ;

T d;N ¼ o

oy
ðxNuNÞ �

o

ox
ðxNvNÞ þ

1

2
DðjuNj2Þ;

T h;N ¼ div ðhNuNÞ:

ð1:8Þ
For the computation of the Fourier coefficients T̂ x;NðkÞ; T̂ d;N ðkÞ and T̂ h;N ðkÞ of the nonlinear terms, we use

a pseudospectral method (see [8,22]). In this way, the total number of operations required to compute the

nonlinear terms is O(N2log2(N)) operations. The evaluation of the Fourier coefficients of the three nonlin-

ear terms (1.8) of the shallow water problem (1.5) requires 9 FFTs (direct and inverse), at each time step. To

eliminate the aliasing error we use the 3/2 rule (see [8]).

For the time integration of the previous system of ODEs (1.7), we shall consider two time schemes: an

explicit scheme and a semi-implicit scheme. The trigonometric polynomials being eigenfunctions of the

hyperdissipative operator (1.3) used for the turbulence modeling, the matrix obtained is diagonal. So an
exact time integration of the dissipative terms can be obtained, with no restrictive stability constraint

(see [8,15]). We will now describe the two proposed schemes, which are, respectively, explicit and semi-

implicit for the lower order and nonlinear terms; both solve exactly the hyperdissipative part.
1.1. Explicit scheme

Classically, in meteorology, the Leap–Frog scheme, which is a second order explicit scheme, is used for

the time integration of the rotation, convective and gravity terms (see [18,49] for example). In the present
case, we obtain, 8k 2 IN :
x̂nþ1
k ¼ expð�2mTDtjk0j4pÞx̂n�1

k � 2Dt expð�mTDtjk0j4pÞðT̂ n

x;N ðkÞ þ f d̂
n

kÞ;

d̂
nþ1

k ¼ expð�2mTDtjk0j4pÞd̂
n�1

k � 2Dt expð�mTDtjk0j4pÞðT̂ n

d;N ðkÞ � f x̂n
k � jk0j2gĥnkÞ;

ĥ
nþ1

k ¼ expð�2mTDtjk0j4pÞĥn�1

k � 2Dt expð�mTDtjk0j4pÞðT̂ n

h;N ðkÞ þ H d̂
n

kÞ;

ð1:9Þ
where Dt is the time step retained for the time integration. Using the classical von Neumann stability anal-

ysis (see [37,49]), we obtain the stability constraint for this explicit scheme:
jUj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ f 2

1

k02

r�����
�����Dtk0 6 1; ð1:10Þ
where k 0 = |k 0|, U = (U,V) is a constant advecting velocity (linearized problem), with |� | the Euclidean

norm, and the mesh size Dx = Lx/N = Ly/N. In practice, for the numerical simulation described in Section

3.1, we have retained N = 256 and Dt = 10 s.

From (1.10) we can derive three stability conditions, depending on which term is dominant in the left-

hand side of (1.10). The first stability constraint, denoted by Stab1, is due to the explicit treatment of the

convective terms (i.e., when |U| is large compared to
ffiffiffiffiffiffiffi
gH

p
and fL, high Rossby number, high speed flow).

This is the CFL condition:
Stab1 : jUjDtk0 6 1: ð1:11Þ

The second stability constraint, denoted by Stab2, comes from the explicit treatment of the inertial terms

associated with the rotation of the earth (Coriolis force, i.e., when fL is large compared to |U| and
ffiffiffiffiffiffiffi
gH

p
,

high rotation or very small Rossby number):
Stab2 : fDt 6 1: ð1:12Þ
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Finally, the third stability condition, called Stab3, is due to the explicit treatment of the gravity terms

gDh and Hd in (1.9), (i.e., when
ffiffiffiffiffiffiffi
gH

p
is large compared to fL and |U|, that is gravity dominated flows):
Stab3 :
ffiffiffiffiffiffiffi
gH

p
Dtk0 6 1: ð1:13Þ
Generally, we have |U|. 10–100 m/s (Jet-Stream), g = 9.81 m/s2, H = 104 m (troposphere) and the Coriolis
force f = 10�4 s�1. So the more restrictive stability constraint in (1.10) is the condition Stab3 defined in

(1.13). Moreover, we see that the stability constraint Stab3 is more restrictive for the high wavenumbers

k 0 than for the small wavenumbers. So, the explicit scheme (1.9) is more stable for the computation of

the large scales (small wavenumbers).
1.2. Semi-implicit scheme

To increase the stability of the explicit scheme (1.9) a second order implicit scheme (Crank–Nicholson
scheme) is used for the time integration of the gravity terms gDh andHd, and a second order explicit scheme

(Leap–Frog scheme) is used for the rotation and convective terms (see [18,38,49]). In the present case, we

obtain the following second order semi-implicit scheme, 8k 2 IN :
x̂nþ1
k ¼ expð�2mTDtjk0j4pÞx̂n�1

k � 2Dt expð�mTDtjk0j4pÞðT̂ n

x;NðkÞ þ f d̂
n

kÞ;

d̂
nþ1

k � gDtjk0j2ĥnþ1

k ¼ gDtjk0j2 expð�2mTDtjk0j4pÞĥn�1

k þ expð�2mTDtjk0j4pÞd̂n�1

k

� 2Dt expð�mTDtjk0j4pÞðT̂ n

d;N ðkÞ � f x̂n
kÞ;

ĥ
nþ1

k þ HDtd̂
nþ1

k ¼ �HDt expð�2mTDtjk0j4pÞd̂n�1

k þ expð�2mTDtjk0j4pÞĥn�1

k

� 2Dt expð�mTDtjk0j4pÞT̂ n

h;NðkÞ:

ð1:14Þ
The stability constraint for the semi-implicit scheme (1.14), obtained with the von Neumann stability

analysis, is:
jUj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHðcosðlDtÞÞ2 þ f 2

1

k02

r�����
�����Dtk0 ¼ sinðlDtÞ 6 1; ð1:15Þ
with l = �k 0 Æ U or l ¼ �k0 �U�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHk02 þ f 2

p
(frequencies associated with wave propagation, see

[37,49]). In practice, for the numerical simulation described in Section 3.2, we have retained N = 256 and

Dt = 50 s.

By comparison with (1.10), the term (cos(lDt))2 reduces the stability constraint due to the gravity terms.
In practice, for a similar spatial resolution, we can choose, at least, a time step five times larger for the semi-

implicit scheme (1.14) than for the explicit scheme (1.9). However, the drawback of the semi-implicit

scheme is that the increase of the stability is obtained by reducing the speed of the wave propagation (dis-

persive error). Moreover, this slow down, produced by the semi-implicit scheme, is more important on the

high wavenumbers than on the low wavenumbers (see [49] and Fig. 2(a)).

The aim of this paper is to propose new numerical schemes, accurate and with good stability properties,

in order to increase the time step needed by comparison with the explicit scheme (1.9), and so to decrease

the CPU time required for the numerical simulations, and with less dispersive error than for the semi-
implicit scheme (1.14). The stability constraint (1.13) is function of the wavenumber, and the explicit

scheme (1.9) is more stable for the small wavenumbers than for the large wavenumbers. So we are lead

to consider a scale separation, and to adapt the time integration to the wavenumbers computed (i.e., to

the size of the scales computed). Such schemes are called multilevel schemes. Multilevel methods have been

previously developed for the Navier–Stokes equations, in the case of homogeneous isotropic turbulence and

in the case of the channel flow problem (see, for example [15–17]).
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Another possibility is as follows: since the stability constraint is function of the parts of the shallow

water problem (1.5), i.e., Stab1 for the convective terms (see (1.11)), Stab2 for the rotations terms (see

(1.12)), and Stab3 for the gravity terms (see (1.13)), we can separate the terms (splitting of the operators),

in order to adapt the time integration scheme to the terms integrated (i.e., to the operator integrated). Such

schemes are called multistep methods or fractional step methods. For previous works see, for example
[2,7,19,25,26,28–30,40,41]. By difference with the time split schemes proposed in Section 4, in which we

use only one time step, the time split schemes described in the previous references are a form of partial oper-

ator splitting employing two different time steps. The split schemes identify the terms responsible for the

rapid oscillations and integrate them in time, with small time step, while holding the other terms constant.

The result of this integration is then used to advance the other terms with a larger time step, well appro-

priate to describe the slower motion. A variant is proposed in [31], which integrates the fast problem using

a low order scheme with small time step, and then average the result on a long time step to use in a high

order accurate integration of the slow variables.
This paper is organized as follows. In Section 2, we describe some schemes based on a splitting of the

scales (multilevel methods), and the numerical results obtained with such schemes are presented in Section

3. Then, in Section 4, we propose some schemes based on a splitting of the operators (multistep or frac-

tional step methods), and the numerical results obtained with such schemes are described in Section 5.

Finally, Section 6 contains some concluding remarks and indications on future developments.
2. New schemes based on a splitting of the scales (multilevel methods)

In this section, we shall describe new schemes based on a splitting of the scales, and an adaptation of

the time scheme used (explicit scheme (1.9) or semi-implicit scheme (1.14)) according to the size of the

scales computed. Following Section 1, the aim is to obtain new schemes, more accurate than the semi-

implicit scheme (1.14) (less dispersive error), and with better stability properties than the explicit scheme

(1.9).

The shallow water problem can be viewed as a surrogate for global primitive equation models which do

not generally filter the Lamb wave that can be viewed either as a horizontally propagating acoustic wave or
an inertia gravity wave. The high wavenumber behavior of the Lamb wave is well approximated with the

shallow water system. Note that the Lamb wave may not be relevant for high resolution limited area models

which filter this mode and bound the highest frequency of atmospheric waves by the Brunt–Vaisala

frequency.

In the shallow water problem (1.1), there are present the propagation at a constant speed U due to the

convective terms (linearized problem), the propagation of the inertial waves due to the inertial or rotation

terms (Coriolis force), and the propagation of the gravity waves due to the gravity terms. The frequencies

(phase speed), associated with these propagation speeds, can be written as (see [24,49]):
l1;k ¼ �U � k0;

l2;k ¼ � U � k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHk02 þ f 2

q� �
;

l3;k ¼ � U � k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHk02 þ f 2

q� �
:

ð2:1Þ
When k = |k| increases, |l1,k|, |l2,k| and |l3,k| increase. Moreover, |l1,k| � |li,k| for i = 2,3, and |l2,k| . |l3,k|
(see Fig. 1). As it has been previously said, the dispersive error (slow down) is more important on the high

wavenumbers than on the low wavenumbers. To illustrate this, let us consider the following equation:
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Fig. 2. Error on the wave propagation speed (dispersive error), and relative error on the time derivative, due to time integration

scheme. We have used a time step five times larger for the Crank–Nicholson scheme than for the Leap–Frog scheme.
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oqk
ot

þ c
oqk
ox

¼ 0; ð2:2Þ
associated with the propagation of a wave at a speed c ¼
ffiffiffiffiffiffiffi
gH

p
:

qkðx; tÞ ¼ Qk expðik0ðx� ctÞÞ; ð2:3Þ

with k0 ¼ 2p

Lx
k. If we discretize (2.2) using the Leap–Frog scheme, we shall obtain a propagation speed for the

computed solution equal to:
cLF;k ¼
1

k0Dt
arcsinðcDtk0Þ; ð2:4Þ
where Dt is a time step insuring the stability of the Leap–Frog scheme: cDt k 0
6 1 (see (1.10)).
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Now, if we consider the discretization of (2.2), using the Crank–Nicholson scheme, we shall obtain a

propagation speed for the computed solution equal to:
cCN;k ¼
1

k0Dt
arctgðcDtk0Þ: ð2:5Þ
The Crank–Nicholson scheme being more stable than the Leap–Frog scheme (see (1.15)), we can use a

time step larger for the Crank–Nicholson scheme than for the Leap–Frog scheme. In Fig. 2(a), we have

represented the ratio cLF,k/c and cCN,k/c, using a time step five times larger for the Crank–Nicholson

scheme (2.5) than for the Leap–Frog scheme (2.4). We can see the dispersive error, increasing with the

high wavenumbers, due to the Crank–Nicholson scheme. So, the dispersive error, due to the Crank–

Nicholson scheme, is more important on the small scales (large wavenumbers) than on the large ones
(small wavenumbers). However, for the shallow water problem (1.5) considered here, the contribution

of the small scales (large wavenumbers) on the solution (1.6) is small by comparison with that of the large

scales (see [24]).

Let us now consider the time derivative of the solution (2.3); the modulus of the time derivative is

lk = k 0c|Qk|. If we consider, now, the modulus lLF,k (resp. lCN,k) of the time derivative of the solution com-

puted with the Leap–Frog scheme (2.4) (resp. Crank–Nicholson scheme (2.5)), we have lLF,k = k 0cLF,k|Qk|

(resp. lCN,k = k 0cCN,k|Qk|). In Fig. 2(b), we have represented the errors on the time derivative
jlk�lLF;k j

lk
and

jlk�lCN;k j
lk

, due to the Leap–Frog and Crank–Nicholson schemes, as functions of the wavenum-

bers. We have assumed, for the dependence of |Qk| on k 0, that:
jQkj ¼ ðk0Þ�3=2
; ð2:6Þ
which simulates the decrease of the kinetic energy spectrum (slope of (k 0)�3 in the inertial range). We recall

that we use a time step five times larger for the Crank–Nicholson scheme than for the Leap–Frog scheme.

We can see, in Fig. 2(b), that the relative error on the time derivative, due to the Crank–Nicholson scheme,

increases rapidly, even on the small wavenumbers. Moreover, this error is less important with the Leap–

Frog scheme, especially on the small wavenumbers (small increasing). An error on the time derivative in-

duces an error on the time evolution of the computed solution. We see, from (2.3) and (2.6), that the time

derivative decreases in modulus when k 0 increases. So, the large (resp. small) scales are associated with the
fast (resp. slow) time scales.

However, it is important to accurately compute the large scales (small wavenumbers), since the large

scales are those which contain most of the kinetic energy and enstrophy (two-dimensional turbulent flows).

Moreover, the large scales are associated with short time frequencies (large period in time), so spatial scale

separation induces temporal scale separation (see [24]). It is on the small frequencies that the Coriolis force

has a more important effect and, for atmospheric flows, the effect of the rotation of the earth is important

(quasi-geostrophic flows, see [14]).

So, since:

� the explicit scheme (1.9) is more stable for the large scales than for the small ones (see (1.10)),

� the relative error on the time derivative due to the semi-implicit scheme (1.14) is more important on the

large scales than that due to the explicit scheme (1.9),

� it is important to accurately compute the large scales of the flow (more accuracy is required on the large

scales than on the small scales),

we can envision to adapt the time scheme used (explicit scheme (1.9) or semi-implicit scheme (1.14)) to the
size of the scales computed, i.e., according to the size of the wavenumber k (multilevel scheme). However,

this requires:
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(i) to be able to separate the scales and to choose a cut-off level to define the small and large scales;

(ii) to choose a time step Dt function of the scale size, i.e., of the wavenumber k, or Dt being wavenumber

independent, i.e., identical for all the scales;

(iii) to choose a time scheme function of k: the explicit scheme (1.9) for the small wavenumbers k (large

scales), and the semi-implicit scheme (1.14) for the large wavenumbers k (small scales).

To define such a multilevel scheme, the first step (step (i)) is to separate the scales. For the spectral Galer-

kin method previously described in Section 1, this separation is quite natural. For the dependent variables,

x, d and h, let us consider a cut-off level N1 < N, kN1
¼ N1

2
being the cut-off wavenumber associated. To de-

fine and separate the small and large scales, we write:
xN ðx; tÞ ¼ xN1
ðx; tÞ þ xN

N1
ðx; tÞ;

dN ðx; tÞ ¼ dN1
ðx; tÞ þ dNN1

ðx; tÞ;

hN ðx; tÞ ¼ hN1
ðx; tÞ þ hNN1

ðx; tÞ;

ð2:7Þ
where xN1
; dN1

and hN1
are associated with the large scales (small wavenumbers):
xN1
ðx; tÞ

dN1
ðx; tÞ

hN1
ðx; tÞ

0
BB@

1
CCA ¼

X
k2IN1

x̂kðtÞ

d̂kðtÞ

ĥkðtÞ

0
BB@

1
CCA expðik0 � xÞ; ð2:8Þ
and xN
N1
; dNN1

and hNN1
are associated with the small scales (large wavenumbers):
xN
N1
ðx; tÞ

dNN1
ðx; tÞ

hNN1
ðx; tÞ

0
BBB@

1
CCCA ¼

X
k2IN nIN1

x̂kðtÞ

d̂kðtÞ

ĥkðtÞ

0
BB@

1
CCA expðik0 � xÞ: ð2:9Þ
We can rewrite (2.8) and (2.9) using the projection operators:
wN1
¼ PN1

w and wN
N1

¼ QN
N1
w; ð2:10Þ
where PN1
and QN

N1
are the orthogonal projections, in L2(X), onto the spaces V N1

and V N n V N1
, respec-

tively, and w = x, d or h.

Remark 2.1. Considering several cut-off levels Ni and applying recursively the same scale separation on the

small scales, we can define more than two levels of scales.

Now, we are looking for the equations associated with the time evolution of the large scales. To obtain
these equations, we impose that the orthogonal projection of the residuals (obtained substituting xN, dN,
hN, to x, d and h in (1.5)), on the space V N1

, are null (least square method).

Using the orthogonality properties of the trigonometric polynomials in L2(X), we obtain the following

system of ODEs, for the Fourier coefficients x̂k; d̂k; ĥk;k 2 IN1
(small wavenumbers, large scales):
d

dt
x̂k þ mTjk0j4px̂k þ dPN1

ðT x;N ÞðkÞ þ f d̂k ¼ 0;

d

dt
d̂k þ mTjk0j4pd̂k þ dPN1

ðT d;N ÞðkÞ � f x̂k � gjk0j2ĥk ¼ 0;

d

dt
ĥk þ mTjk0j4pĥk þ H d̂k þ dPN1

ðT h;N ÞðkÞ ¼ 0:

ð2:11Þ
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Similarly, to obtain the equations associated with the time evolution of the small scales, we use a least

square method, i.e., we impose that the orthogonal projection of the residual on the space V N n V N1
is null.

Using the orthogonality properties of the trigonometric polynomials in L2(X), we obtain the following sys-

tem of ODEs, for the Fourier coefficients x̂k; d̂k; ĥk; k 2 IN n IN1
(large wavenumbers, small scales):
d

dt
x̂k þ mTjk0j4px̂k þ dQN

N1
ðT x;N ÞðkÞ þ f d̂k ¼ 0;

d

dt
d̂k þ mTjk0j4pd̂k þ dQN

N1
ðT d;N ÞðkÞ � f x̂k � gjk0j2ĥk ¼ 0;

d

dt
ĥk þ mTjk0j4pĥk þ H d̂k þ dQN

N1
ðT h;N ÞðkÞ ¼ 0:

ð2:12Þ
Remark 2.2. The orthogonal projections PN1
and QN

N1
, defined in (2.10), commute with the partial

derivative operators, because of the periodic boundary conditions (trigonometric polynomials are used as

Galerkin basis). Hence the coupling between the large scales (see (2.11)) and the small scales (see (2.12)) is

done through the nonlinear terms:
T x;N ¼T x;N ðuN;xNÞ ¼ T x;N ðuN1
þ uNN1

;xN1
þ xN

N1
Þ

¼T x;N ðuN1
;xN1

Þ þ T x;N ðuN1
;xN

N1
Þ þ T x;N ðuNN1

;xN1
Þ þ T x;N ðuNN1

;xN
N1
Þ;

T d;N ¼T d;N ðuN;xNÞ ¼ T d;N ðuN1
þ uNN1

;xN1
þ xN

N1
Þ

¼T d;N ðuN1
;xN1

Þ þ T d;N ðuN1
;xN

N1
Þ þ T d;N ðuNN1

;xN1
Þ þ T d;N ðuNN1

;xN
N1
Þ;

T h;N ¼T h;N ðuN; hN Þ ¼ T h;NðuN1
þ uNN1

; hN1
þ hNN1

Þ

¼T h;N ðuN1
; hN1

Þ þ T h;N ðuN1
; hNN1

Þ þ T h;N ðuNN1
; hN1

Þ þ T h;N ðuNN1
; hNN1

Þ:

ð2:13Þ
Now, we want to define a cut-off level N1 < N to separate the small and large scales. As it has been previ-

ously said (see step (iii)), the aim is to apply the explicit scheme (1.9) on the large scales (small wavenum-

bers) and the semi-implicit scheme (1.14) on the small scales (large wavenumbers). Let us denote by Dte the
time step used for the explicit scheme (i.e., for the small wavenumbers), and by Dti the time step used for the

semi-implicit scheme (i.e., for the large wavenumbers). We suppose that we have chosen the time step Dte.
Using the stability constraint (1.10) associated with the explicit scheme (1.9), we define a cut-off wavenum-

ber k0N1
¼ 2p

Lx
kN1

¼
ffiffiffi
2

p
2p
Lx

N1

2
, such that the explicit scheme is stable for the choice of Dte and for k 6 kN1

(large
scales), and unstable for k > kN1

(small scales). If this cut-off level N1 is too low, we must decrease the time

step Dte chosen.

Now, we shall consider the second step previously defined (step (ii)). We shall present different strategies
for the time integration of the small and large scales, leading to different multilevel methods. For all these

multilevel methods, we used the explicit scheme (1.9) to compute the large scales (corresponding to

0 6 k0 6 k0N1
), with the time step Dte, and the semi-implicit scheme (1.14) to compute the small scales (cor-

responding to k0N1
< k0 6 k0N ), with the time step Dti. We denote by DtRef the time step retained in Section 3.1

for the reference simulation, i.e., for the simulation corresponding to the explicit scheme (1.9) used to com-

pute all the scales 0 6 k0 6 k0N (explicit reference scheme). As we shall see later, such a simulation will be

used as the reference simulation to compare the numerical results obtained with the new proposed schemes

(see Sections 3 and 5). The different multilevel schemes now proposed are based on different choices for the
time steps Dte and Dti used for the explicit and semi-implicit schemes, respectively.
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2.1. Scheme S1

In this case, we choose Dte = Dti > DtRef, since the explicit time scheme is used only for the large scales,

and it is more stable for the small wavenumbers.

The drawback, of such a scheme, is that it does not allow to choose a time step much larger than DtRef,
otherwise the cut-off level N1 is too low, and we retrieve approximately the semi-implicit scheme (1.14) on

all the wavenumbers k 0, i.e., to compute all the scales.

The numerical results, obtained with this scheme, will be presented in Section 3.3.
2.2. Scheme S2

In order to overcome the drawback of the numerical stability problem previously explained when

Dte = Dti (see Scheme S1), we choose here Dti > Dte. For example, we choose Dte = DtRef and Dti = lDtRef,
with l > 1. Such a choice induces a closure problem, since Dti > Dte. Indeed, the computation of the large

scales xnþ1
N1

; dnþ1
N1

and hnþ1
N1

requires to know the small scales xN
N1
; dNN1

and hNN1
at the previous time. This is

due to the nonlinear terms coupling the large and small scales (see (2.13)). The closure is obtained in the

following manner: since the stability constraint (CFL condition) Stab1, defined in (1.11) and due to the ex-

plicit treatment of the nonlinear terms, is not the most restrictive one (the most restrictive one being Stab3,

defined in (1.13), and due to the explicit treatment of the gravity terms), we will retain the values of the

nonlinear coupling terms in (2.11), i.e., ðPN1
ðT q;NðuN1

;xN
N1
ÞÞ þ PN1

ðT q;NðuNN1
;xN1

ÞÞ þ PN1
ðT q;N ðuNN1

;xN
N1
ÞÞ

with q = x or d that is the vorticity or the plane divergence equation, and PN1
ðT h;N ðuN1

; hNN1
ÞÞþ

PN1
ðT h;N ðuNN1

; hN1
ÞÞ þ PN1

ðT h;N ðuNN1
; hNN1

ÞÞ in the height equation, at the time tn = nDt, during the l time steps

tn + i = (n + i)Dt, i = 1, . . ., l, for the computation of the large scales (quasi-static approximation, see [15–

17]). For example, for l = 5, we compute the large scales with the explicit scheme (1.9) at the times tn,

tn + 1, . . ., tn + 5 with the time step Dte = DtRef, and we compute the small scales with the semi-implicit scheme
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Fig. 3. Spectra of time derivatives (thin lines) and nonlinear terms (thick lines) for the vorticity (solid lines), plane divergence (dashed

lines) and height (dot-dashed lines) equations of the shallow water problem.
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(1.14) at the times tn and tn + 5 with the time step Dti = 5DtRef. In this way, it is necessary to only compute

the nonlinear terms PN1
ðT x;N ðuN1

;xN1
ÞÞ ¼ T x;N1

ðuN1
;xN1

Þ; PN1
ðT d;NðuN1

;xN1
ÞÞ ¼ T d;N1

ðuN1
;xN1

Þ and

PN1
ðT h;N ðuN1

; hN1
ÞÞ ¼ T h;N1

ðuN1
; hN1

Þ, which are estimated on the coarse cut-off level N1 < N, at the times

tn + i, i = 1, . . ., l�1, inducing a saving in CPU time: OðN 2
1log2ðN 1ÞÞ operations instead of OðN 2log2ðNÞÞ

at the times tn + i, i = 1, . . ., l � 1. Here, the quasi-static approximation not induces lost of accuracy since
the nonlinear terms are not dominant in the shallow water problem (1.5) as we see in Fig. 3 (see, also

[46]). Note that this may not always be the case for the shallow water equations, high speed flows over steep

topography is an example of a situation in which the quasi-static approximation may be invalid.

The numerical results, obtained with this scheme, are presented in Section 3.4.

Remark 2.3. Consider, for example, the nonlinear term PN1
ðTx;N ðuN1

;xN1
ÞÞ ¼ Tx;N1

ðuN1
;xN1

Þ. In fact, we

have PN1
ðTx;N ðuN1

;xN1
ÞÞ ’ Tx;N1

ðuN1
;xN1

Þ instead of an equality, as it has been previously written.

However, the difference is the aliasing error and, since we use the 3/2 rule to eliminate it, we recover an

equality. This remark is also true for the nonlinear terms PN1
ðT d;N ðuN1

;xN1
ÞÞ ¼ T d;N1

ðuN1
;xN1

Þ and

PN1
ðT h;N ðuN1

; hN1
ÞÞ ¼ T h;N1

ðuN1
; hN1

Þ.
3. Numerical results (multilevel methods)

We shall present, in this section, the numerical results obtained with the explicit reference scheme (1.9)

used to compute all the scales, with the semi-implicit scheme (1.14) used to compute all the scales, and with

the two new multilevel schemes S1 and S2 described in Section 2.

The aim is to obtain new schemes to resolve the shallow water problem (1.5), with better stability prop-

erties than the explicit scheme (1.9), in order to increase the time step and, so, to reduce the CPU time used,
avoiding a too large dispersive error. Ideally we want, through the new proposed schemes, to be able to

compute the numerical solution of (1.5), with approximately the accuracy of the explicit scheme (1.9),

and with nearly the time step (and so the CPU time) of the semi-implicit scheme (1.14).
3.1. Explicit reference scheme

Now, we are going to present the numerical results obtained with the explicit scheme (1.9). This scheme

is used as a reference, in order to compare the results obtained with the semi-implicit scheme (1.14) and with
the new proposed schemes, since less dispersive error appears with this explicit scheme, than with the semi-

implicit scheme (1.14) when the time step is increased.

We choose H = 104 m (troposphere) and N = 256. The size of the smallest scales which are computed,

i.e., the mesh size, is Lx/N . 25 km. To model the action of the small scales, not taken into account in

the computation, we use the hyperdissipative operator defined in (1.3), with p = 2 as the turbulence model.

For the eddy viscosity mT defined in (1.4), we have retained f = 104. As we can see in Fig. 4(a), we well

recover an energy spectrum with a k 0�3 slope (see Section 1), evidencing a good behavior of the eddy vis-

cosity model to dissipate energy in the inertial range, dissipation due to the small scales not computed and
modeled with the turbulence model. The slope of the height spectrum in Fig. 4(a) is indeed in k 0�5

(see Section 1).

The time step retained in order to obtain the numerical stability is DtRef = 10 s. In this way the stability

constraint Stab3, defined in (1.13), is approximatively equal to one. We can notice that if we choose

DtRef = 20 s, the explicit scheme is unstable and we quickly obtain an overflow in the numerical simulations.

For N = 256, the required CPU time on one processor of an IBM SP is 1.44 s for one time step. The

choice of the initial condition is obtained firstly by imposing an energy spectrum decreasing as k 0�3
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(two-dimensional turbulent flow), and with a plane divergence d equal to zero (barotropic flow). We run
some time iterations until reaching a statistically steady state, i.e., the time average of global quantities

in space are approximately time independent. Then, we use this velocity field to start the comparison

between the new proposed schemes and the reference explicit scheme. For more details, see [15]. Since

the explicit Leap–Frog scheme required two initial time steps, the first time step is obtained using an explicit

third order Runge–Kutta scheme. The comparison is done over 20 days (namely 176,000 time steps for the

explicit reference scheme).

As in turbulence modeling, we look for the large scales of the flow since those are the scales which con-

tain the kinetic energy and the enstrophy in two-dimensional turbulent flows. So we look at such global
quantities, characteristic of turbulent flows. More precisely, in order to compare the different schemes

described here, we compute some global quantities in space, such as spectra: energy spectrum, spectrum
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of the height, spectrum of the divergence, to obtain a scale comparison according to the scale decomposi-

tion of the computed variables. In the same manner, we compute some physical characteristic quantities,

such as the kinetic energy kukL2ðXÞ (or energy norm of the velocity field):
kuk2L2ðXÞ ¼
Z
X
juðxÞj2 dx;
the enstrophy kukH1ðXÞ (or enstrophy norm, i.e., energy norm of the gradient of the velocity field):
kuk2H1ðXÞ ¼
Z
X
jruðxÞj2 dx;
and the maximum value of the velocity kukL1ðXÞ:
kukL1ðXÞ ¼ sup
X

juðxÞj:
Moreover, in order to compare the computed dependent variables x, d and h, we compare the energy norm

of the vorticity x, of the plane divergence d and of the height h.

Most of the CPU time is used for the computation of the nonlinear terms, which requires, at each time

step, 9 FFT, so around 9(N2 log2(N)) operations (see Section 1), with N = 256. Let us denote by NbRef the
total number of operations required for the explicit scheme over 20 days of simulation (namely 176,000 time

steps), that is NbRef . 9(N2 log2(N)) · 176,000 operations.

At the initial time we have imposed that the plane divergence d = 0. The Rossby and the Froude numbers

for the simulation considered here are:
Ro ¼ U
fL

ðcomparison of the advection effect with the rotation effectÞ;

Fr ¼ Uffiffiffiffiffiffiffi
gH

p ðcomparison of the advection effect with the gravity effectÞ;
where U is a characteristic velocity and L a characteristic horizontal length.

In Fig. 5(a), we have represented the energy norm of the velocity field computed with the explicit refer-

ence scheme. We have kukL2ðXÞ ’ 23:5 . So, we choose U = 23.5 as a characteristic velocity and we have:
Ro ¼ 23:5

10�4 � 6:31� 106
’ 3:7� 10�2 � 1;
and:
Fr ¼ 23:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81� 104

p ’ 7:5� 10�2 � 1:
Since Fr . Ro � 1, the computed flow is quasi-geostrophic. Moreover, the aspect ratio:
H
L
¼ 104

6:31� 106
¼ 1:6� 10�3
is quite small. Since Ro and Fr are small, we conclude that the advection effect, associated with the nonlin-

ear terms, is small by comparison with the rotation and gravity effects (see Fig. 3). This has been used for

the S2 scheme (see Section 2.2).

The effect of the Coriolis force being the stratification of the flow (see [14]), and this effect being impor-

tant by comparison with advection (Ro � 1), the vertical component of the velocity is small. So, due to the

incompressibility of the fluid, the plane divergence d is small also, and the height of the free surface h is
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Fig. 5. Representation of the kinetic energy, the enstrophy, and the maximum velocity as functions of t. The semi-implicit scheme

corresponds to the choice of Dt = 50 s.
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small, by comparison with the mean heightH, in agreement with the numerical results obtained (see Section

3.2).

3.2. Semi-implicit scheme

For the same choice of the parameters, but using the semi-implicit scheme (1.14) instead of the explicit

scheme (1.9), we have retained Dt = 50 s = lDtRef, with l = 5. With this choice, the semi-implicit scheme is
stable. We notice that for a choice of the parameter l larger than 5, the semi-implicit scheme (1.14) is still

stable, but the difference with the explicit (reference) scheme (1.9) is increased.

The complexity of the computation is, approximately, of the same order for the explicit and for the

semi-implicit schemes, on one time step. In particular, one time step requires the same number of FFTs

to compute the nonlinear terms, for which the essential part of the CPU time is used. So, if we denote
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by Nbi the total number of operations required for the semi-implicit scheme over 20 days of simulation (i.e.,

35,200 time steps), we have Nbi ¼ NbRef

5
¼ 20%NbRef .

In Figs. 4–6, we have compared the quantities computed with the explicit reference scheme and with the

semi-implicit scheme.

In Fig. 4, we have represented the spectra associated with the velocity (kinetic energy spectrum), the
height and the plane divergence. As we can see, the spectra are quite similar. Some differences appear on

the height spectrum, even for the low wavenumbers (large scale), but the slope of the spectrum is preserved.

Then we consider, in Fig. 5, the kinetic energy kukL2ðXÞ (see Figs. 5(a) and (b)), the enstrophy kukH1ðXÞ (see

Fig. 5(c)) and the maximum velocity kukL1ðXÞ (see Fig. 5(d)), computed with the explicit and with the semi-

implicit schemes. As we can see in Figs. 5(a) and (b), a decorrelation of the curves associated with the

explicit scheme and with the semi-implicit scheme appears from time to time. Moreover, when the time

increases, the amplitude of the decorrelation and the width of the period of the decorrelation increase.
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Fig. 6. Representation of the energy norm of the vorticity x, of the plane divergence d, and of the height h as functions of t. The semi-

implicit scheme corresponds to the choice of D t = 50 s.
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For the enstrophy, the value is small, since there is a small energy dissipation rate (fluid with no kinetic

viscosity). The slow decrease of the enstrophy with time, due to the turbulence model, is quite similar for

the explicit and semi-implicit schemes.

As for the maximum velocity (L1 norm), the average profile of the time evolution is quite similar for the

two schemes, even though the oscillations around this profile are different.
In Fig. 6, we have represented the energy norm of the vorticity x (see Fig. 6(a)), of the plane diver-

gence d (see Fig. 6(b)) and of the height h (see Figs. 6(c) and (d)). The behavior of the vorticity, in time,

is similar with the enstrophy (see Fig. 5(c)). For the plane divergence, the values are small, for all t, since

atmospheric flows are quasi-geostrophic. Like in Fig. 5(d) (maximum velocity), the average profiles are

quite similar, but some differences appear on the oscillations (high frequencies) around the average profile

(low frequencies).

The height variable h is a characteristic quantity of the shallow water problem. As we can see in Figs.

6(c) and (d), we have a behavior similar to the kinetic energy (see Figs. 5(a) and (b)), with an increase
of the width of the decorrelation period and of the amplitude oscillations obtained with the semi-implicit

scheme, when t increases.

In summary, the differences between the explicit scheme and the semi-implicit scheme, due to the disper-

sive error of the semi-implicit scheme (see Section 1), appear essentially on the kinetic energy kukL2ðXÞ, and
on the energy norm of the height khkL2ðXÞ.

Now, if we consider the time averages of the relative errors between the explicit and semi-implicit

schemes, the relative error on the kinetic energy kukL2ðXÞ is around 5.0 · 10�4, and the relative error on

the energy norm of the height khkL2ðXÞ is approximately 6.1 · 10�3, over the 20 days of the numerical com-
parisons (see Table 1).

Remark 3.1. The interest of the semi-implicit scheme is to allow to consider time steps larger than for the

explicit scheme. However, if we choose for the semi-implicit scheme the same little time step as for the

explicit scheme, we obtain results similar with the two schemes, due to the convergence of the schemes
toward the exact solution. However, the explicit scheme is the proper reference state for the designed

multilevel schemes. Indeed, the Crank–Nicholson scheme has half of the truncation error (and opposite

sign) than the Leap–Frog scheme. However, this concerns only the standard two-time level Crank–

Nicholson. The way how the semi-implicit algorithm is built here employs the trapezoidal integral over

double time step, whereupon the resulting Crank–Nicholson scheme has twice larger truncation error than

the standard leapfrog. Alternatively, one might consider the trapezoidal rule composed over two time steps

0.25(wn + 1 + 2wn + wn�1) for the gravity wave terms. Such a scheme would have formally the same size of

the truncation error than the explicit scheme, but still the opposite sign.
3.3. Scheme S1

Now, we want to compare the scheme S1 (see Section 2.1) with the explicit reference scheme (1.9). We

have retained Dte = Dti = 5DtRef = 50 s. The cut-off level N1 < N is equal to N1 = 64. In this way, the per-

centage of the Fourier coefficients computed with the explicit scheme over the total number of coefficients
Table 1

Relative errors in energy norm for the different schemes

Semi-implicit Dt = 50 s Semi-implicit Dt = 30 s S1 S2 S3

Velocity ·10�4 5.0 2.2 2.7 0.9 3.3

Height ·10�3 6.1 2.7 3.3 1.0 2.6
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is around 5%. Notice that, this cut-off level is the highest cut-off level N1 acceptable, to guarantee stability

for the time step retained.

In Fig. 7, we consider the spectra for the velocity, the height and the plane divergence. The spectra

obtained with the S1 scheme are quite similar to the spectra obtained with the explicit reference scheme.

Moreover, the low parts of the spectra are better described than with the semi-implicit scheme
(see Fig. 4), especially for the kinetic energy spectrum.

Now, we consider, in Fig. 8, the kinetic energy (see Figs. 8(a) and (b)), the enstrophy (see Fig. 8(c)), and

the maximum velocity (see Fig. 8(d)), computed with the explicit scheme and with the S1 scheme. As we can

see, the results are quite similar with those obtained for the semi-implicit scheme (see Fig. 5). However, for

the kinetic energy i.e., kukL2ðXÞ, the retranscription is better with the S1 scheme than with the semi-implicit

scheme. Indeed, if we compare Figs. 8(a) and (b) with Figs. 5(a) and (b), we can see that the correlation
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Fig. 7. Spectra of velocity (kinetic energy spectrum), height and plane divergence for the explicit reference scheme (thin lines) and for

the scheme S1 (thick lines).
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Fig. 8. Representation of the kinetic energy, the enstrophy, and the maximum velocity as functions of t.
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between the curves of the explicit and S1 schemes is better than for the explicit and semi-implicit schemes. In

particular, there is no decorrelation of the curves when t increases, as it is the case in Fig. 5.

In Fig. 9, we have represented the energy norm of the vorticity x (see Fig. 9(a)), of the plane divergence d
(see Fig. 9(b)), and of the height h (see Figs. 9(c) and (d)). Still here, we can see that the results of the com-

parison, with the explicit reference scheme, are quite similar with those obtained for the semi-implicit

scheme (see Fig. 6), even if the plane divergence is slightly over estimated by comparison with the explicit

scheme. However, as for the kinetic energy in Figs. 8(a) and (b), the correlation between the curves of the
explicit and S1 schemes, for the energy norm of the height, is better than for the explicit and semi-implicit

schemes (see Figs. 9(c) and (d) and Figs. 6(c) and (d)). Moreover, there is no increase of the decorrelation

when t increases.

If we consider the time averages of the relative errors between the explicit and S1 schemes, the relative

error on the kinetic energy kukL2ðXÞ is around 2.7 · 10�4, and that on the energy norm of the height khkL2ðXÞ
is approximately equal to 3.3 · 10�3, over the 20 days of the numerical comparisons (see Table 1).
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Fig. 9. Representation of the energy norm of the vorticity x, of the plane divergence d, and of the height h as functions of t.
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Finally, the total number of operations NbS1 required for the S1 scheme, over 20 days of simulation (i.e.,

35,200 time steps), is approximately the same as for the semi-implicit scheme, namely Nbi (see Section 3.2).

3.4. Scheme S2

Finally, we want to compare the S2 scheme (see Section 2.2) with the explicit reference scheme (1.9). We

have chosen Dte = DtRef = 10 s, and Dti = 5DtRef = 50 s > Dte. The coarse level N1 < N is equal to N1 = N/2.
The total number of operations NbS2 required for the S2 scheme, over the 20 days of simulation (i.e.,

176,000 time steps), is larger than for the semi-implicit and S1, but less than for the explicit reference

scheme. Indeed, the evaluation of the nonlinear terms requires the computation of the FFT on the finest

grid (i.e., O(N2 log2(N)) operations) only once every five time steps and, for the other time steps, the non-

linear terms are estimated on the coarse level N1, requiring FFT with OðN 2
1log2ðN 1ÞÞ operations, the cou-

pling nonlinear terms being estimated with a quasi-static approximation (see Section 2.2). So, over l = 5
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time steps, the number of operations required for the S2 scheme is ðl� 1Þ � 9� N 2
1log2ðN 1Þ þ 9�

N 2log2ðNÞ operations, instead of l · 9 · N2 log2(N) operations for the explicit scheme. For l = 5, N = 256

and N1 = 128, the ratio of the number of operations required for the S2 scheme on five time steps, over

the number required for the explicit reference scheme on five time steps, is around 37%.

The total number of operations NbS2 required for the S2 scheme, over 20 days of simulation (i.e., 176,000
time steps), is NbS2 ¼ 35; 200� ððl� 1Þ � 9� N 2

1log2ðN 1Þ þ 9� N 2log2ðNÞÞ ’ 37%NbRef . So, NbS2 is around
0.37NbRef, and 1.8Nbi.

In Fig. 10, we have represented the spectra of the velocity field, of the height and of the plane divergence.

The spectra obtained with the S2 scheme are quite similar with those corresponding to the explicit scheme,

especially for the low and medium ranges of the spectra, showing a better behavior of the S2 scheme than

the semi-implicit and S1 schemes (see Figs. 4 and 7).
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Fig. 10. Spectra of velocity (kinetic energy spectrum), height and plane divergence for the explicit reference scheme (thin lines) and for

the scheme S2 (thick lines).
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Now, we consider, in Fig. 11, the kinetic energy (see Figs. 11(a) and (b)), the enstrophy (see Fig. 11(c))

and the maximum velocity (see Fig. 11(d)), computed with the explicit reference scheme and with the S2

scheme. As we can see, the results obtained for the kinetic energy are quite similar with those obtained with

the explicit reference scheme; and they are thus better than with the semi-implicit and S1 schemes (see Figs.

5 and 8). For the kinetic energy, the curves are quite similar in phase and in amplitude. For the enstrophy,
the differences with the explicit scheme appear much larger than for the semi-implicit and S1 schemes (see

Figs. 5(c) and 8(c)). However, the time average values are near 1.8 · 10�5. The lesser decrease of the ens-

trophy obtained with the S2 scheme, when the time increases, by comparison with the explicit scheme is due

to the small increase of the velocity Fourier coefficients associated with the highest wavenumbers (see en-

ergy spectrum in Fig. 10), probably due to a modification of the action of the turbulence model (1.3) on the

highest modes, since Dti > Dte for the semi-implicit scheme applied on the high wavenumbers jkj > N1

2
. As

for the maximum velocity in Fig. 11(d), the average profiles (low frequencies) of the time evolution obtained
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Fig. 11. Representation of the kinetic energy, the enstrophy, and the maximum velocity as functions of t.
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with the S2 and explicit reference schemes are quite similar, although the oscillations (high frequencies)

around the profile are different.

In Fig. 12, we have represented the energy norm for the vorticity x (see Fig. 12(a)), for the plane diver-

gence d (see Fig. 12(b)) and for the height h (see Figs. 12(c) and (d)). The behavior in time of the vorticity is

similar with the enstrophy (see Fig. 11(c)). The other curves obtained with the S2 scheme and with the ex-
plicit scheme are very similar in phase and in amplitude, over all the time integration (20 days), these results

being better than with the semi-implicit and S1 schemes (see Figs. 6 and 9). This is in agreement with the

fact that the spectra of the height and plane divergence, corresponding to the explicit and S2 schemes, are

very similar for all the wavenumbers (see Fig. 10).

If we consider the time averages of the relative errors between the S2 and explicit reference schemes, we

see that the relative error on the kinetic energy kukL2ðXÞ is around 8.7 · 10�5, and the relative error on the

energy norm of the height khkL2ðXÞ is approximately 1.0 · 10�3, over the 20 days of the numerical compar-

ison (see Table 1).
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Fig. 12. Representation of the energy norm of the vorticity x, of the plane divergence d, and of the height h as functions of t.
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Now, we shall compare the S2 and the semi-implicit schemes, for a similar CPU time used. Let us con-

sider the semi-implicit scheme (1.14) with a time step Dt = 30 s, instead of 50 s as previously. If we denote by

Nbi,30 the total number of operations used for the semi-implicit scheme (Dt = 30 s), over 20 days of simu-

lation (namely 58,660 time steps), we have Nbi;30 ¼ 5
3
Nbi ’ 33%NbRef ’ NbS2 . In Figs. 13–15, we have com-

pared the results obtained with the explicit reference scheme (1.9) for Dt = DtRef = 10 s as previously, and
with the semi-implicit scheme (1.14) for Dt = 30 s.

Comparing Figs. 10 and 13, we see a better retranscription of the spectra with the S2 scheme than with

the semi-implicit scheme (Dt = 30 s), especially for the low and medium range of the spectra (large scales).

Similarly, comparing Figs. 11(a) and (b) and Figs. 14(a) and (b) (kinetic energy), we see that there is no

decorrelation of the curves associated with the explicit and S2 schemes, when the time increases, by oppo-

sition with the curves associated with the explicit and semi-implicit schemes (Dt = 30 s). The same
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Fig. 13. Spectra of velocity (kinetic energy spectrum), height and plane divergence for the explicit reference scheme (thin lines) and for

the semi-implicit scheme (thick lines). The semi-implicit scheme corresponds to the choice of Dt = 30 s.
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Fig. 14. Representation of the kinetic energy, the enstrophy, and the maximum velocity as functions of t. The semi-implicit scheme

corresponds to the choice of Dt = 30 s.
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comments are available, when we compare Figs. 12(c) and (d) and Figs. 15(c) and (d) (energy norm of the

height): the height is well computed with the scheme S2, when the time increases, with no decorrelation with

the explicit reference scheme, by opposition with the semi-implicit scheme for Dt = 30 s.

If we consider the time averages of the relative errors between the semi-implicit scheme (Dt = 30 s) and

explicit reference schemes, we see that the relative error on the kinetic energy kukL2ðXÞ is around 2.2 · 10�4,

and the relative error on the energy norm of the height khkL2ðXÞ is approximately 2.7 · 10�3, over the 20 days

of the numerical comparison (see Table 1).
4. New schemes based on a splitting of the operators (multistep or fractional step methods)

Rather than new schemes based on a splitting of the scales, as previously considered in Sections 2 and 3

for the Si schemes, i = 1,2 (multilevel methods), we are now interested in developing new schemes based on
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Fig. 15. Representation of the energy norm of the vorticity x, of the plane divergence d, and of the height h as functions of t. The semi-

implicit scheme corresponds to the choice of Dt = 30 s.
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a splitting of the operators (multistep schemes or fractional step schemes). Indeed, with the splitting of the

operators, we can adapt the time integration to the terms considered in the equations. This is the object of
this section.

4.1. A first fractional step scheme

The nonlinear terms are costly in CPU time, but the CFL stability constraint Stab1 (see (1.11)), associ-

ated with the explicit time integration of the convective nonlinear terms, is not too restrictive. By opposi-

tion, the gravity terms are not costly in CPU time, but the stability constraint Stab3 (see (1.13)), associated

with the explicit time integration of these terms, is very restrictive (see Section 1). So, in order to take this
into account, we propose to separate the time integration of the nonlinear terms and that of the gravity

terms (separation of the operators), and to apply a specific time integration to the nonlinear terms and

to the gravity terms. We call this a multistep or fractional step scheme.



686 T. Dubois et al. / Journal of Computational Physics 207 (2005) 660–694
To take into account separately the nonlinear terms and the gravity terms, one possibility is the follow-

ing. To obtain tn + 1 = (n + 1) Dt from tn = nDt, the time step Dt is decomposed as follows:

� first step: to take into account the nonlinear terms (and Coriolis terms) with the explicit Leap–Frog

scheme (see (1.9)), over the time step Dt;
� nb other steps, nb > 1: to take into account the gravity terms with the explicit Leap–Frog scheme (see

(1.9)), over the time step Dt.

So, we obtain the following scheme:

� Step one: 8k 2 IN ,
x̂nþ1
k ¼ expð�2mTDtjk0j4pÞx̂n�1

k � 2Dt expð�mTDtjk0j4pÞðT̂ n

x;NðkÞ þ f d̂
n

kÞ;

~̂d
1

k ¼ expð�2mTDtjk0j4pÞd̂
n�1

k � 2Dt expð�mTDtjk0j4pÞðT̂ n

d;N ðkÞ � f x̂n
kÞ;

~̂h
1

k ¼ expð�2mTDtjk0j4pÞĥn�1

k � 2Dt expð�mTDtjk0j4pÞT̂ n

h;N ðkÞ:

ð4:1Þ
� Step i, i = 2, . . .,nb + 1: 8k 2 IN ,
~̂d
i

k ¼ expð�2mTDtjk0j4pÞ~̂d
i�2

k þ 2Dtjk0j2 g
nb

expð�mTDtjk0j4pÞ~̂h
i�1

k ;

~̂h
i

k ¼ expð�2mTDtjk0j4pÞ~̂h
i�2

k � 2Dt
H
nb

expð�mTDtjk0j4pÞ~̂d
i�1

k ;

ð4:2Þ
with ~̂d
0

k ¼ d̂
n�1

k and ~̂h
0

k ¼ ĥ
n�1

k .

� Finally: 8k 2 IN ,
d̂
nþ1

k ¼ ~̂d
nbþ1

k ;

ĥ
nþ1

k ¼ ~̂h
nbþ1

k :

ð4:3Þ
This scheme is a fractional time step, with nb + 1 steps. As we can see on (4.2), taking into account the

gravity terms over nb sub-steps allows to reduce the influence of these terms at each step, since g and H are

replaced by g/nb and H/nb, increasing the numerical stability. The time step is always the same Dt (see the
hyperdissipative operator), and we use several steps, for one time step, to decrease the influence of the grav-

ity terms at each step.

For the global consistency of the scheme on the d and h equations, we have, summing (4.1) and (4.2), for

i = 3, . . .,nb + 1, i odd (we suppose that nb is even): 8k 2 IN ,
expðmTDtjk0j4pÞd̂nþ1

k þ 2shðmTDtjk0j4pÞ
Xnb�1

i¼3

~̂d
i

k ¼ expð�mTDtjk0j4pÞd̂n�1

k � 2DtðT̂ n

d;N ðkÞ � f x̂n
kÞ

þ 2Dtjk0j2g ~̂hk
D E

nb
;

expðmTDtjk0j4pÞĥnþ1

k þ 2shðmTDtjk0j4pÞ
Xnb�1

i¼3

~̂h
i

k ¼ expð�mTDtjk0j4pÞĥn�1

k � 2DtT̂
n

h;N ðkÞ � 2DtH ~̂dk
D E

nb
;

ð4:4Þ
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where
~̂dk
D E

nb
¼ 1

nb

Xnb
i¼2

~̂d
i

k; i even;

~̂hk
D E

nb
¼ 1

nb

Xnb
i¼2

~̂h
i

k; i even:

ð4:5Þ
We have chosen f = 104 and p = 2 (see Section 2). Moreover, we have 0 6 mTDt|k 0|4p � 1, for essentially all

the wavenumbers k 0. So, sh(mTDt|k 0|4p). mT Dt|k 0|4p � 1, for essentially all the wavenumbers k 0. Since the

coefficients associated with d̂
nþ1

k (resp. ĥ
nþ1

k ) and d̂
n�1

k (resp. ĥ
n�1

k ) in (4.4) are, exp( ± mTDt|k 0|4p). 1 ± mT
Dt|k 0|4p . 1, we can neglect the action of the terms 2shðmTDtjk0j4pÞ

Pnb
i¼1

~̂d
i

k and 2shðmTDtjk0j4pÞ
Pnb

i¼1
~̂h
i

k in
(4.4). Finally, for essentially all the wavenumbers k, we obtain for the scheme (4.1)–(4.3):
x̂nþ1
k ¼ expð�2mTDtjk0j4pÞx̂n�1

k � 2Dt expð�mTDtjk0j4pÞðT̂ n

x;N ðkÞ þ f d̂
n

kÞ;

d̂
nþ1

k ’ expð�2mTDtjk0j4pÞd̂
n�1

k � 2Dt expð�mTDtjk0j4pÞ T̂
n

d;N ðkÞ � f x̂n
k � jk0j2g ~̂hk

D E
nb

� �
;

ĥ
nþ1

k ’ expð�2mTDtjk0j4pÞĥn�1

k � 2Dt expð�mTDtjk0j4pÞ T̂
n

h;N ðkÞ þ H ~̂dk
D E

nb

� �
:

ð4:6Þ
Considering at ~̂d
i

k and
~̂h
i

k, i = 1, . . .,nb, as estimates of d̂kðtÞ and ĥkðtÞ, respectively, at intermediate times

lying between tn and tn + 1, we deduce from (4.5) that:
~̂dk
D E

nb
¼ 1

nb

Xnb
i¼2; ieven

~̂d
i

k ’
1

Dt

Z tnþ1

tn

d̂kðtÞ dt;

~̂hk
D E

nb
¼ 1

nb

Xnb
i¼2; ieven

~̂h
i

k ’
1

Dt

Z tnþ1

tn

d̂kðtÞ dt:
ð4:7Þ
The temporal averages (4.7), over one time step Dt, for the gravity terms, induce a filtration of the high
temporal frequencies, associated with the fast waves of the gravity terms, which are responsible for the

numerical instability problems (see Section 1). So, we can hope to obtain a better numerical stability with

such a scheme. Our fractional step schemes are different from the method of averages proposed in [42,31]

and [23]. Indeed, in the fractional step schemes described here, we use a second order time scheme for all the

scales and we update the size of the time step in function of the operator. In averaged methods, a second

order time scheme with large time step is used for the slow variables, and a first order time scheme with

small time step is used for the fast variables. The coupling between the slow and fast variables is obtained

with time averaging.

4.2. Scheme S3

Since the implicit Crank–Nicholson scheme is stable, but with a dispersive error (see Section 1), a variant

of the previous fractional step scheme (4.1)–(4.3) is to use the Crank–Nicholson scheme, instead of the

Leap–Frog scheme, over the nb sub-steps for the gravity terms in (4.2). Like this, we can hope to benefit

of the stability properties of the Crank–Nicholson scheme, and to reduce the dispersive error, by compar-

ison with the semi-implicit scheme (1.14), since the influence of the gravity terms, on each sub-step, is re-
duced (the parameters g and H being divided by nb). So, we obtain the following scheme, named S3:
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� Step one: 8k 2 IN ,
x̂nþ1
k ¼ expð�2mTDtjk0j4pÞx̂n�1

k � 2Dt expð�mTDtjk0j4pÞðT̂ n

x;NðkÞ þ f d̂
n

kÞ;

~̂d
1

k ¼ expð�2mTDtjk0j4pÞd̂n�1

k � 2Dt expð�mTDtjk0j4pÞðT̂ n

d;N ðkÞ � f x̂n
kÞ;

~̂h
1

k ¼ expð�2mTDtjk0j4pÞd̂
n�1

k � 2Dt expð�mTDtjk0j4pÞT̂ n

h;N ðkÞ:

ð4:8Þ
� Step i, i = 2, . . .,nb + 1: 8k 2 IN ,
~̂d
i

k �
g
nb

Dtjk0j2~̂h
i

k ¼ expð�2mTDtjk0j4pÞ~̂d
i�2

k þ Dtjk0j2 g
nb

expð�2mTDtjk0j4pÞ~̂h
i�2

k ;

~̂h
i

k þ
H
nb

Dt~̂d
i

k ¼ expð�2mTDtjk0j4pÞ~̂h
i�2

k � Dt
H
nb

expð�2mTDtjk0j4pÞ~̂d
i�2

k ;

ð4:9Þ
with ~̂d
0

k ¼ d̂
n

k and ~̂h
0

k ¼ ĥ
n

k.

� Finally: 8k 2 IN ,
d̂
nþ1

k ¼ ~̂d
nbþ1

k ;

ĥ
nþ1

k ¼ ~̂h
nbþ1

k :

ð4:10Þ
5. Numerical results (multistep or fractional step method)

In this section we shall present the numerical results obtained with the new multistep scheme S3

described in Section 4.

As with the multilevel schemes (see Section 3), our aim is to obtain new schemes to resolve the shallow

water problem (1.5), with less CPU time used than for the explicit scheme (1.9), and with an acceptable

dispersive error. Ideally, as in Section 3, we want through the new proposed schemes, to be able to compute

the numerical solution of (1.5), with approximately the accuracy of the explicit scheme (1.9), and with

nearly the CPU time of the semi-implicit scheme (1.14).

We compare the S3 scheme (see Section 4.2) with the explicit reference scheme (1.9). We have chosen a
time step Dt = 3 DtRef = 30 s. As for the parameter nb, we have chosen nb = 10. Let us consider the total num-

ber of operations NbS3 required for the S3 scheme, over 20 days of simulation (i.e., 58,660 time steps). Since

the CPU time used is essentially due to nonlinear terms computation, and since the nonlinear terms are com-

puted only at the first substep (Step one, see (4.8)), we have NbS3 ’ Nbi;30 ¼ 5
3
Nbi ’ 33%NbRef ’ NbS2 .

In Fig. 16, we have represented the spectra of the velocity field, of the height and of the plane divergence.

Except for the highest wavenumbers, the spectra obtained with the S3 scheme are very similar with those

corresponding to the explicit scheme.

Then, we consider, in Fig. 17, the kinetic energy (see Figs. 17(a) and (b)), the enstrophy (see Fig. 17(c))
and the maximum velocity (see Fig. 17(d)), computed with the explicit reference scheme and with the S3

scheme. As we can see, the results obtained with the S3 scheme are very similar with those obtained with

the explicit reference scheme, and so better than with the semi-implicit scheme with a time step of 50 s

(see Figs. 5(a) and (b)). In particular, for the maximum velocity in Fig. 17(d), the correlation between

the explicit and S3 curves is good, over all the time interval.

In Fig. 18, we have represented the energy norm for the vorticity x (see Fig. 18(a)), for the plane diver-

gence d (see Fig. 18(b)) and for the height h (see Figs. 18(c) and (d)). The behavior of the vorticity, in time, is
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Fig. 16. Spectra of velocity (kinetic energy spectrum), height and plane divergence for the explicit reference scheme (thin lines) and for

the scheme S3 (thick lines).
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similar with the enstrophy (see Fig. 17(c)). In Fig. 17(b), we can see the good agreement of the results

obtained with the explicit scheme and with the S3 scheme, for the plane divergence. As for the height,

we see in Figs. 17(c) and (d) that the explicit and S3 curves are very similar, over all the time, as it was

the case for the S2 scheme (see Figs. 12(c) and (d)).

If we consider the time averages of the relative errors between the S3 and explicit reference schemes, we

see that the relative error on the kinetic energy kukL2ðXÞ is around 3.3 · 10�4, and the relative error on the
energy norm of the height khkL2ðXÞ is approximately 2.6 · 10�3, over the 20 days of the numerical compar-

ison (see Table 1).

We have previously seen that the S3 scheme required a CPU time of the same order as for the S2 scheme

(see Section 3.4) and for the semi-implicit scheme with a time step Dt = 30 s (see Section 3.4). We can com-

pare the S3 and S2 schemes through Figs. 10–12 and Figs. 16–18. Similarly, we can compare the S3 scheme

with the semi-implicit scheme with a time step Dt = 30 s through Figs. 13–15 and Figs. 16–18. Finally, as it
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Fig. 17. Representation of the kinetic energy, the enstrophy, and the maximum velocity as functions of t.
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has been said before, we recall that the time averages of the relative errors, over the 20 days of the numerical

comparison, between the S2 scheme (resp. the semi-implicit scheme with a time step Dt = 30s) and the

explicit reference scheme is 8.7 · 10�5 (resp. 2.2 · 10�4) for the kinetic energy, and 1.0 · 10�3

(resp. 2.7 · 10�3) for the energy norm of the height (see Section 3.4). For more complete comparisons,
see Table 1.
6. Conclusion and future work

We have presented in this work several new multilevel/multistep schemes to compute the numerical solu-

tion of the shallow water problem (1.5). These schemes are based on a scale separation (multilevel meth-

ods), or an operator separation (multistep or fractional step methods). The numerical results obtained
show that the schemes proposed allow to reduce the dispersive error and to increase the numerical stability.
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Fig. 18. Representation of the energy norm of the vorticity x, of the plane divergence d, and of the height h as functions of t.
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It is possible to consider the splitting of the scales, used in Section 2, with the splitting of the operators,

used in Section 4. Since the stability constraint of the time integration of the gravity terms is stronger for the
high wavenumbers (small scales) than for the low wavenumbers (large scales), see Section 1, we can think at

separating the scales (splitting of the scales), and adapting the parameter nb, used in the previous multistep

schemes (4.1)–(4.3) and S3 (splitting of the operators), as function of the size of the scales computed. The

parameter nb will be chosen larger for the small wavenumbers than for the large wavenumbers. Moreover,

we use the explicit Leap–Frog scheme (resp. the implicit Crank–Nicholson scheme) for the small wavenum-

bers (resp. large wavenumbers). We shall denote by nb,expl (resp. nb,impl) the value of the parameter nb chosen

to compute the large (resp. small) scales, with the explicit (1.9) (resp. semi-implicit (1.14)) scheme. So, to

compute the large scales, we obtain an explicit multistep scheme with nb,expl + 1 steps. As for the small
scales, we obtain a semi-implicit multistep scheme with nb,impl + 1 steps.

Another planetary model is the two-dimensional shallow water problem on the sphere (spherical coor-

dinates). In this case, an additional problem is the use of nonuniform meshes (finer near the poles, see [49],
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for example). So, the presence of the poles implies a more restrictive stability constraint over all the sphere.

To overcome this, we can use spectral methods with spherical harmonic basis. For more details, see

[18,33,34,48,49]. We intend to adapt the new multilevel and multistep schemes previously described to this

case of a spherical geometry.

We shall also consider the case of the system of equations (1.2) on a rectangular domain X, with Dirich-
let boundary conditions. This problem is considered as a limited area model (LAM) in meteorology, also

called regional problem (see [43,13]). The numerical approximation is often obtained using a finite differ-

ence method. Such a model allows, in meteorology, a prediction for the small scales on a short period,

by opposition with a planetary model, which is used for the prediction of the large scales on a long period.

Indeed, in the case of a limited area model, the mesh is finer than for a planetary model. For a LAM, it is

necessary to specify the values of the velocity field on the boundary of the limited area domain (Dirichlet

boundary conditions), at each time step. These values, on the boundary, can be obtained using a model for

the large scales (for example a planetary model). For more details, see, for example [13,43]. However, due to
the hyperbolic character of the shallow water equations (1.2), the boundary conditions cannot be applied

everywhere on the boundary oX of the rectangular domain X. The localization of the boundary conditions

is function of the characteristic values: |U| and jUj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH þ f 2

k02

q
in the linearized case (characteristic

method), i.e., of the wave propagation. According the value of the height parameter H, the characteristic
values have different signs. So, the number of characteristics which enter in the domain is different. For

more details on this problem of boundary conditions, see [32,45,47]. We also intend to adapt the previous

multilevel and multistep schemes, to the case of a limited area model. To obtain large and small scales

decomposition in the finite difference case or in the finite volume case, we will use the incremental un-

knowns (IU). For more details on the incremental unknowns see, for example [9–12,20] and the references

therein. This work is in progress (see [17]) and will be presented elsewhere.
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